An Automatic Method for Selecting Convergence Ratios in Iterative Learning Control

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

development and implementation of an optimized control strategy for induction machine in an electric vehicle

in the area of automotive engineering there is a tendency to more electrification of power train. in this work control of an induction machine for the application of electric vehicle is investigated. through the changing operating point of the machine, adapting the rotor magnetization current seems to be useful to increase the machines efficiency. in the literature there are many approaches wh...

15 صفحه اول

AN ITERATIVE METHOD WITH SIX-ORDER CONVERGENCE FOR SOLVING NONLINEAR EQUATIONS

Modification of Newtons method with higher-order convergence is presented. The modification of Newtons method is based on Frontinis three-order method. The new method requires two-step per iteration. Analysis of convergence demonstrates that the order of convergence is 6. Some numerical examples illustrate that the algorithm is more efficient and performs better than classical Newtons method and ...

متن کامل

On the convergence of iterative learning control

We derive frequency-domain criteria for the convergence of linear iterative learning control (ILC) on finite-time intervals that are less restrictive than existing ones in the literature. In particular, the former can be used to establish the convergence of ILC in certain cases where the latter are violated. The results cover ILC with non-causal filters and provide insights into the transient b...

متن کامل

Iterative Learning Control for uncertain systems: Robust monotonic convergence analysis

In this paper, we present a novel Robust Monotonic Convergence (RMC) analysis approach for finite time interval Iterative Learning Control (ILC) for uncertain systems. For that purpose, a finite time interval model for uncertain systems is introduced. This model is subsequently used in an RMC analysis based on μ analysis. As a result, we can handle additive andmultiplicative uncertainty models ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SN Computer Science

سال: 2021

ISSN: 2662-995X,2661-8907

DOI: 10.1007/s42979-021-00537-4